Semigroup generation properties of Hamiltonian operator matrices
نویسندگان
چکیده
منابع مشابه
C0-semigroup and Operator Ideals
Let T (t), 0 ≤ t < ∞, be a one parameter c0-semigroup of bounded linear operators on a Banach space X with infinitesimal generator A and R(λ, A) be the resolvent operator of A. The Hille-Yosida Theorem for c0-semigroups asserts that the resolvent operator of the infinitesimal generator A satisfies ‖R(λ, A)‖ ≤ M λ−ω for some constants M > 0 and λ ∈ R (the set of real numbers), λ > ω. The object ...
متن کاملHamiltonian Square Roots of Skew-Hamiltonian Matrices
We present a constructive existence proof that every real skew-Hamiltonian matrix W has a real Hamiltonian square root. The key step in this construction shows how one may bring any such W into a real quasi-Jordan canonical form via symplectic similarity. We show further that every W has infinitely many real Hamiltonian square roots, and give a lower bound on the dimension of the set of all suc...
متن کاملSpectral properties of unbounded JJ-self-adjoint block operator matrices
We study the spectrum of unbounded J-self-adjoint block operator matrices. In particular, we prove enclosures for the spectrum, provide a sufficient condition for the spectrum being real and derive variational principles for certain real eigenvalues even in the presence of non-real spectrum. The latter lead to lower and upper bounds and asymptotic estimates for eigenvalues. AMS Subject classifi...
متن کاملOn the semigroup of square matrices
We study the structure of nilpotent subsemigroups in the semigroup M(n,F) of all n × n matrices over a field, F, with respect to the operation of the usual matrix multiplication. We describe the maximal subsemigroups among the nilpotent subsemigroups of a fixed nilpotency degree and classify them up to isomorphism. We also describe isolated and completely isolated subsemigroups and conjugated e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SCIENTIA SINICA Mathematica
سال: 2015
ISSN: 1674-7216
DOI: 10.1360/012015-15